On perfectly meager sets in the transitive sense

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Perfectly Meager Sets

We show that it is consistent that the product of perfectly meager sets is perfectly meager.

متن کامل

On transitive soft sets over semihypergroups

The aim of this paper is to initiate and investigate new soft sets over semihypergroups, named special soft sets and transitive soft sets and denoted by $S_{H}$ and  $T_{H},$ respectively. It is shown that $T_{H}=S_{H}$ if and only if $beta=beta^{*}.$ We also introduce the derived semihypergroup from a special soft set and study some properties of this class of semihypergroups.

متن کامل

Universally Meager Sets

We study category counterparts of the notion of a universal measure zero set of reals. We say that a set A ⊆ R is universally meager if every Borel isomorphic image of A is meager in R. We give various equivalent definitions emphasizing analogies with the universally null sets of reals. In particular, two problems emerging from an earlier work of Grzegorek are

متن کامل

Sharply $(n-2)$-transitive Sets of Permutations

Let $S_n$ be the symmetric group on the set $[n]={1, 2, ldots, n}$. For $gin S_n$ let $fix(g)$ denote the number of fixed points of $g$. A subset $S$ of $S_n$ is called $t$-emph{transitive} if for any two $t$-tuples $(x_1,x_2,ldots,x_t)$ and $(y_1,y_2,ldots ,y_t)$ of distinct elements of $[n]$, there exists $gin S$ such that $x_{i}^g=y_{i}$ for any $1leq ileq t$ and additionally $S$ is called e...

متن کامل

Transitive Hyperbolic Sets on Surfaces

We show that every transitive hyperbolic set on a surface is included in a locally maximal hyperbolic set.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2001

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-01-06073-7